Research Strategies and Critical Data Needs: Common Themes

Michael Gallo, PhD

Dept. of Environmental & Occupational
Medicine, University of Medicine &

Dentistry of New Jersey

Propose a research strategy to explore the significance of exposures to environmental chemicals in the rising rates of obesity and diabetes, including human, animal and mechanistic studies

This question was not answered

Are there research avenues that should be avoided?

Avoid assumptions that all adult-onset diabetes has a common etiology

Are there immediate data gaps that if filled would provide significant direction to longer term research programs?

- Exposure assessment
 - Expand capacity and improve sensitivity of detection methods
 - Identify chemicals of interest
- Develop/refine high and medium throughput screens
 - Identify chemicals of interest
 - Provide insight into modes of action
 - A tool to assess mixtures
- Identify appropriate animal models

Research Needs/Strategies

- Use existing cohorts/specimens
 - Consider non-traditional samples (e.g., elective surgeries, fingernail clippings, hair)
- Meta-analysis or pooling from existing and ongoing studies
- Identify better biomarkers
- Collect new samples in a forward thinking manner
- Consider characteristics of animal model system
 - Species differences (e.g., chemical specific pharmacokinetics, PPARα in rodent and human)
 - Disease state of interest (e.g., Type 1 vs Type 2 diabetes)
 - Genetic diversity of the model

Research Needs/Strategies cont.

- Parallel testing of key compounds and mixtures
- Identify key "causal" pathways for each disease
- Understand role of dietary habits and role in modifying chemical toxicity
- Non-linear responses (low dose vs high dose)
- Identify critical windows of development
- Define role of other factors, e.g., vitamin D status, gut flora

Methodology - Measure Most Relevant Endpoints

- Animal studies
 - Obesity: fat mass, fat distribution fat pad, DXA, NMR,
 - Diabetes: blood glucose and insulin (fasting and fed), GTT, ITT,
 - Hormones and metabolic phenotyping (i.e., food intake, energy expenditure)
 - Dietary and genetic background control
- Human studies
 - Use diagnostic criteria for fasting glucose, ↑ BMI, ↑ waist/height ratio, hemoglobin A1C, HDL